Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Intervalo de ano de publicação
2.
Parasitol Res ; 123(1): 80, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38163833

RESUMO

Chagas disease, endemic from Latin America, is caused by Trypanosoma cruzi and is transmitted by triatomine feces. This parasite undergoes complex morphological changes through its life cycle, promoted by significant changes in signal transduction pathways. The activity of protein kinase CK2 has been described in trypanosomatids. Using a specific peptide and radioactive ATP, we identified CK2 activity on the cellular surface and the cytoplasmic content in Trypanosoma cruzi, apart from the secreted form. Dephosphorylated casein promoted an increase of 48% in the secreted CK2 activity. Total extract of peritoneal macrophages from BALB/c and inactivated human serum promoted an increase of 67% and 36%, respectively, in this activity. The protein secreted by parasites was purified by HPLC and had shown compatibility with the catalytic subunit of mammalian CK2. Incubation of the parasites with CK2 inhibitors, added to the culture medium, prevented their growth. The opposite was observed when CK2 activators were used. Results of interaction between Trypanosoma cruzi and the gut of the vector have revealed that, in the presence of CK2 inhibitors, there is a reduction in the association rate. A similar inhibition profile was seen in the Trypanosoma cruzi-macrophages interaction, confirming the importance of this enzyme in the life cycle of this protozoan.


Assuntos
Doença de Chagas , Trypanosoma cruzi , Animais , Humanos , Trypanosoma cruzi/metabolismo , Caseína Quinase II/metabolismo , Doença de Chagas/parasitologia , Invertebrados , Mamíferos
3.
PLoS One ; 18(4): e0283983, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37018291

RESUMO

BACKGROUND: Cytokines induced by SARS-CoV-2 infection play a crucial role in the pathophysiology of COVID-19 and hyperinflammatory responses have been associated with poor clinical outcomes, with progression to severe conditions or long-term subacute complications named as long-COVID-19. METHODS: In this cross-sectional study, we aimed to evaluate a set of antigen-specific inflammatory cytokines in blood from recovered COVID-19 individuals or who suffered a post-acute phase of SARS-CoV-2 infection compared to healthy individuals with no history of COVID-19 exposition or infection. Interferon-gamma (IFN-γ), IFN-γ-induced protein 10 (IP-10), tumor necrosis factor (TNF), IL-1ß, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12, and IL-17A were quantified by multiplex cytometric bead assay and enzyme-linked immunosorbent assay after stimulation of whole blood with recombinant Spike protein from SARS-CoV-2. Additionally, all participants have evaluated for anti-(S) protein-specific IgG antibodies. Clinical specimens were collected within two months of COVID-19 diagnosis. RESULTS: A total of 47 individuals were enrolled in the study, a median age of 43 years (IQR = 14.5), grouped into healthy individuals with no history of infection or exposure to SARS-CoV-2 (unexposed group; N = 21); and patients from the Health Complex of the Rio de Janeiro State University (UERJ), Brazil, who were SARS-CoV-2 positive by RT-PCR (COVID-19 group)-categorized as recovered COVID-19 (N = 11) or long-COVID-19 (N = 15). All COVID-19 patients presented at least one signal or symptom during the first two weeks of infection. Six patients were hospitalized and required invasive mechanical ventilation. Our results showed that COVID-19 patients had significantly higher levels of IFN-γ, TNF, IL-1ß, IL-2, IL-6, IL-8, and IP-10 than the unexposed group. The long-COVID-19 group has presented significantly high levels of IL-1ß and IL-6 compared to unexposed individuals, but not from recovered COVID-19. A principal-component analysis demonstrated 84.3% of the total variance of inflammatory-SARS-CoV-2 response in the first two components, and it was possible to stratify IL-6, TNF, IL-1ß, IL-10, and IL-2 as the top-five cytokines which are candidates to discriminate COVID-19 group (including long-COVID-19 subgroup) and healthy unexposed individuals. CONCLUSION: We revealed important S protein-specific differential biomarkers in individuals affected by COVID-19, bringing new insights into the inflammatory status or SARS-CoV-2 exposition determination.


Assuntos
COVID-19 , Citocinas , Humanos , Adolescente , SARS-CoV-2 , Interleucina-10 , Teste para COVID-19 , Quimiocina CXCL10 , Estudos Transversais , Interleucina-2 , Interleucina-6 , Interleucina-8 , Síndrome Pós-COVID-19 Aguda , Brasil , Interferon gama , Fator de Necrose Tumoral alfa
4.
Front Cell Infect Microbiol ; 13: 1025359, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36743305

RESUMO

Current therapeutic ways adopted for the treatment of leishmaniasis are toxic and expensive including parasite resistance is a growing problem. Given this scenario, it is urgent to explore treatment alternatives for leishmaniasis. The aim of this study was to evaluate the effect of 3-phenyl-lawsone (3-PL) naphthoquinone on Leishmania (Viannia) braziliensis infection, both in vitro and in vivo, using two local routes of administration: subcutaneous (higher dose) and tattoo (lower dose). In vitro 3-PL showed low toxicity for macrophages (CC50 >3200 µM/48h) and activity against intracellular amastigotes (IC50 = 193 ± 19 µM/48h) and promastigotes (IC50 = 116 ± 26 µM/72h), in which induced increased ROS generation. Additionally, 3-PL up-regulated the production of cytokines such as tumor necrosis factor alpha (TNF-α), monocyte chemotactic protein 1 (MCP-1), interleukin-6 (IL-6) and IL-10 in infected macrophages. However, the anti-amastigote action was independent of nitric oxide production. Treatment of hamsters infected with L. (V.) braziliensis from one week after infection with 3-PL by subcutaneous (25 µg/Kg) or tattooing (2.5 µg/Kg) route, during 3 weeks (3 times/week) or 2 weeks (2 times/week) significantly decreased the parasite load (p<0.001) in the lesion. The reduction of parasite load by 3-PL treatment was comparable to reference drug meglumine antimoniate administered by the same routes (subcutaneous 1mg/Kg and tattoo 0.1mg/Kg). In addition, treatment started from five weeks after infection with 3-PL per tattoo also decreased the parasite load. These results show the anti-leishmanial effect of 3-PL against L. (V.) braziliensis and its efficacy by subcutaneous (higher dose) and tattoo (lower dose) routes. In addition, this study shows that drug delivery by tattooing the lesion allows the use of lower doses than the conventional subcutaneous route, which may support the development of a new therapeutic strategy that can be adopted for leishmaniasis.


Assuntos
Antiprotozoários , Leishmania braziliensis , Leishmaniose Cutânea , Naftoquinonas , Tatuagem , Cricetinae , Animais , Antimoniato de Meglumina/farmacologia , Antimoniato de Meglumina/uso terapêutico , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Leishmaniose Cutânea/tratamento farmacológico , Leishmaniose Cutânea/parasitologia , Naftoquinonas/farmacologia , Naftoquinonas/uso terapêutico , Carga Parasitária
5.
Front Cell Infect Microbiol ; 12: 1059168, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36710981

RESUMO

Leishmaniasis is a parasitic disease caused by several species of intracellular protozoa of the genus Leishmania that present manifestations ranging from cutaneous ulcers to the fatal visceral form. Leishmania Viannia braziliensis is an important species associated with American tegumentary leishmaniasis and the main agent in Brazil, with variable sensitivity to available drugs. The search for new therapeutic alternatives to treat leishmaniasis is an urgent need, especially for endemic countries. Not only is quercetin well known for its antioxidant activity in radical scavenging but also several other biological effects are described, including anti-inflammatory, antimicrobial, and pro-oxidant activities. This study aimed to investigate the flavonoid quercetin's therapeutic potential in L. (V.) braziliensis infection. Quercetin showed antiamastigote (IC50 of 21 ± 2.5 µM) and antipromastigote (25 ± 0.7 µM) activities and a selectivity index of 22. The treatment of uninfected or L. (V.) braziliensis-infected macrophages with quercetin increased reactive oxygen species (ROS)/H202 generation without altering Nitric Oxide (NO) production. Oral treatment with quercetin of infected hamsters, starting at 1 week of infection for 8 weeks, reduced the lesion thickness (p > 0.01) and parasite load (p > 0.001). The results of this study suggest that the antiamastigote activity of the flavonoid quercetin in vitro is associated, at least in part, with the modulation of ROS production by macrophages. The efficacy of oral quercetin treatment in hamsters infected with L. (V.) braziliensis was presented for the first time and shows its promising therapeutic potential.


Assuntos
Leishmania braziliensis , Leishmania , Leishmaniose Cutânea , Cricetinae , Animais , Quercetina/farmacologia , Quercetina/uso terapêutico , Espécies Reativas de Oxigênio , Leishmaniose Cutânea/tratamento farmacológico , Leishmaniose Cutânea/parasitologia
6.
Artigo em Inglês | MEDLINE | ID: mdl-30519257

RESUMO

BACKGROUND: Despite the development of new therapies for leishmaniasis, among the 200 countries or territories reporting to the WHO, 87 were identified as endemic for Tegumentary Leishmaniasis and 75 as endemic for Visceral Leishmaniasis. The identification of antileishmanial drug candidates is essential to fill the drug discovery pipeline for leishmaniasis. In the hit molecule LQB-118 selected, the first generation of pterocarpanquinones was effective and safe against experimental visceral and cutaneous leishmaniasis via oral delivery. In this paper, we report the synthesis and antileishmanial activity of the second generation of pterocarpanoquinones. METHODS: The second generation of pterocarpanquinones 2a-f was prepared through a palladium-catalyzed oxyarylation of dihydronaphtalen and chromens with iodolawsone, easily prepared by iodination of lawsone. The spectrum of antileishmanial activity was evaluated in promastigotes and intracellular amastigotes of L. amazonensis, L. braziliensis, and L. infantum. Toxicity was assessed in peritoneal macrophages and selective index calculated by CC50/IC50. Oxidative stress was measured by intracellular ROS levels and mitochondrial membrane potential in treated cells. RESULTS: In this work, we answered two pertinent questions about the structure of the first-generation pterocarpanquinones: the configuration and positions of rings B (pyran) and C (furan) and the presence of oxygen in the B ring. When rings B and C are exchanged, we noted an improvement of the activity against promastigotes and amastigotes of L. amazonensis and promastigotes of L. infantum. As to the oxygen in ring B of the new generation, we observed that the oxygenated compound 2b is approximately twice as active against L. braziliensis promastigotes than its deoxy derivative 2a. Another modification that improved the activity was the addition of the methylenedioxy group. A variation in the susceptibility among species was evident in the clinically relevant form of the parasite, the intracellular amastigote. L. amazonensis was the species most susceptible to novel derivatives, whilst L. infantum was resistant to most of them. The pterocarpanoquinones (2b and 2c) that possess the oxygen atom in ring B showed induction of increased ROS production. CONCLUSIONS: The data presented indicate that the pterocarpanoquinones are promising compounds for the development of new leishmanicidal agents.

7.
J. venom. anim. toxins incl. trop. dis ; 24: 35, 2018. tab, graf, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-976030

RESUMO

Despite the development of new therapies for leishmaniasis, among the 200 countries or territories reporting to the WHO, 87 were identified as endemic for Tegumentary Leishmaniasis and 75 as endemic for Visceral Leishmaniasis. The identification of antileishmanial drug candidates is essential to fill the drug discovery pipeline for leishmaniasis. In the hit molecule LQB-118 selected, the first generation of pterocarpanquinones was effective and safe against experimental visceral and cutaneous leishmaniasis via oral delivery. In this paper, we report the synthesis and antileishmanial activity of the second generation of pterocarpanoquinones. Methods: The second generation of pterocarpanquinones 2a-f was prepared through a palladium-catalyzed oxyarylation of dihydronaphtalen and chromens with iodolawsone, easily prepared by iodination of lawsone. The spectrum of antileishmanial activity was evaluated in promastigotes and intracellular amastigotes of L. amazonensis, L. braziliensis, and L. infantum. Toxicity was assessed in peritoneal macrophages and selective index calculated by CC50/IC50. Oxidative stress was measured by intracellular ROS levels and mitochondrial membrane potential in treated cells. Results: In this work, we answered two pertinent questions about the structure of the first-generation pterocarpanquinones: the configuration and positions of rings B (pyran) and C (furan) and the presence of oxygen in the B ring. When rings B and C are exchanged, we noted an improvement of the activity against promastigotes and amastigotes of L. amazonensis and promastigotes of L. infantum. As to the oxygen in ring B of the new generation, we observed that the oxygenated compound 2b is approximately twice as active against L. braziliensis promastigotes than its deoxy derivative 2a. Another modification that improved the activity was the addition of the methylenedioxy group. A variation in the susceptibility among species was evident in the clinically relevant form of the parasite, the intracellular amastigote. L. amazonensis was the species most susceptible to novel derivatives, whilst L. infantum was resistant to most of them. The pterocarpanoquinones (2b and 2c) that possess the oxygen atom in ring B showed induction of increased ROS production. Conclusions: The data presented indicate that the pterocarpanoquinones are promising compounds for the development of new leishmanicidal agents.(AU)


Assuntos
Leishmaniose , Estresse Oxidativo , Descoberta de Drogas , Pterocarpanos/análise
8.
Biomed Res Int ; 2015: 167323, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26120579

RESUMO

CK2 is a protein kinase distributed in different compartments of Leishmania braziliensis: an externally oriented ecto-CK2, an intracellular CK2, and a secreted CK2. This latter form is constitutively secreted from the parasite (CsCK2), but such secretion may be highly enhanced by the association of specific molecules, including enzyme substrates, which lead to a higher enzymatic activity, called inductively secreted CK2 (IsCK2). Here, we examined the influence of secreted CK2 (sCK2) activity on the infectivity of a virulent L. braziliensis strain. The virulent strain presented 121-fold higher total CK2 activity than those found in an avirulent strain. The use of specific CK2 inhibitors (TBB, DRB, or heparin) inhibited virulent parasite growth, whereas no effect was observed in the avirulent parasites. When these inhibitors were added to the interaction assays between the virulent L. braziliensis strain and macrophages, association index was drastically inhibited. Polyamines enhanced sCK2 activity and increased the association index between parasites and macrophages. Finally, sCK2 and the supernatant of the virulent strain increased the association index between the avirulent strain and macrophages, which was inhibited by TBB. Thus, the kinase enzyme CK2 seems to be important to invasion mechanisms of L. braziliensis.


Assuntos
Caseína Quinase II/imunologia , Leishmania braziliensis/enzimologia , Leishmaniose Cutânea/imunologia , Animais , Caseína Quinase II/química , Caseína Quinase II/metabolismo , Humanos , Leishmania braziliensis/imunologia , Leishmania braziliensis/patogenicidade , Leishmaniose Cutânea/parasitologia , Leishmaniose Cutânea/patologia , Macrófagos/imunologia , Macrófagos/parasitologia , Camundongos , Camundongos Endogâmicos BALB C
9.
Biomed Res Int ; 2015: 324915, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26090399

RESUMO

The intracellular protozoa Leishmania spp. and Trypanosoma cruzi and the causative agents of Leishmaniasis and Chagas disease, respectively, belong to the Trypanosomatidae family. Together, these two neglected tropical diseases affect approximately 25 million people worldwide. Whether the host can control the infection or develops disease depends on the complex interaction between parasite and host. Parasite surface and secreted molecules are involved in triggering specific signaling pathways essential for parasite entry and intracellular survival. The recognition of the parasite antigens by host immune cells generates a specific immune response. Leishmania spp. and T. cruzi have a multifaceted repertoire of strategies to evade or subvert the immune system by interfering with a range of signal transduction pathways in host cells, which causes the inhibition of the protective response and contributes to their persistence in the host. The current therapeutic strategies in leishmaniasis and trypanosomiasis are very limited. Efficacy is variable, toxicity is high, and the emergence of resistance is increasingly common. In this review, we discuss the molecular basis of the host-parasite interaction of Leishmania and Trypanosoma cruzi infection and their mechanisms of subverting the immune response and how this knowledge can be used as a tool for the development of new drugs.


Assuntos
Doença de Chagas/imunologia , Interações Hospedeiro-Parasita/imunologia , Leishmaniose/imunologia , Trypanosoma cruzi/imunologia , Antígenos/imunologia , Doença de Chagas/epidemiologia , Doença de Chagas/parasitologia , Humanos , Leishmania/imunologia , Leishmania/patogenicidade , Leishmaniose/epidemiologia , Leishmaniose/parasitologia , Trypanosoma cruzi/patogenicidade
10.
J Antimicrob Chemother ; 68(4): 789-99, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23288404

RESUMO

OBJECTIVES: The pterocarpanquinone LQB-118, previously demonstrated to be effective in vivo via oral delivery, was investigated for its mechanism in selective parasite killing. METHODS: Oxidative stress in Leishmania amazonensis was analysed by evaluating reactive oxygen species (ROS) production (2',7'-dichlorodihydrofluorescein diacetate) and the loss of mitochondrial membrane potential (ΔΨm) using rhodamine, JC-1 and MitoCapture. Ultrastructural analysis was performed using transmission electron microscopy (TEM). DNA fragmentation was evaluated using terminal deoxyribonucleotidyl transferase-mediated dUTP nick-end labelling (TUNEL). RESULTS: Treatment with LQB-118 induced ROS production in the promastigotes of L. amazonensis in a concentration-dependent manner for the first 4 h and was sustained for 24 h. TEM analysis revealed several alterations typical of apoptosis. Promastigotes presented a reduction of ΔΨm after 24 h of incubation with 2.5 µM (18.7%), 5 µM (63.7%) or 10 µM (70.7%) LQB-118. A sub-G0/G1 cell cycle phenotype was observed in 21%-83% of the promastigotes incubated with 1.25-10 µM LQB-118. Concentration-dependent DNA fragmentation was observed in promastigotes treated with 2.5-10 µM LQB-118, and selective DNA fragmentation was observed in intracellular amastigotes after 72 h with 2.5 µM treatment. CONCLUSIONS: Our results suggest that LQB-118 selectively induces ROS-triggered and mitochondria-dependent apoptosis in this parasite.


Assuntos
Antiprotozoários/farmacologia , Apoptose , Leishmania/efeitos dos fármacos , Naftoquinonas/farmacologia , Estresse Oxidativo , Pterocarpanos/farmacologia , Fragmentação do DNA , Marcação In Situ das Extremidades Cortadas , Leishmania/fisiologia , Leishmania/ultraestrutura , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Microscopia Eletrônica de Transmissão , Espécies Reativas de Oxigênio/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...